Krein Spectral Shift Function

نویسندگان

  • DIRK HUNDERTMARK
  • BARRY SIMON
  • Tom Wolff
چکیده

A b s t r a c t . Let ~A,B be the Krein spectral shift function for a pair of operators A, B, with C = A B trace class. We establish the bound f F(I~A,B()~)I ) d,~ <_ f F ( 1 5 1 c l , o ( ) , ) l ) d A = ~ [F(j) F ( j 1 ) ] # j ( C ) , j= l where F is any non-negative convex function on [0, oo) with F(O) = 0 and #j (C) are the singular values of C. The choice F(t) = t p, p > 1, improves a recent bound of Combos, Hislop and Nakamura.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal L-bound on the Krein Spectral Shift Function

and |ξA,B(λ)| ≤ n if A −B is rank n (2) are well known; see, for example, [5] or [6]. The Krein spectral shift function can also be defined for unbounded self-adjoint operators A,B and enjoys the same properties as long as their difference is trace class. The results of this paper extend to general unbounded operators A and B (as long as their difference is trace class) but for simplicity, we w...

متن کامل

Estimates for the spectral shift function of the polyharmonic operator

The Lifshits–Krein spectral shift function is considered for the pair of operators H0 = (−4)l, l > 0 and H = H0 + V in L2(R), d ≥ 1; here V is a multiplication operator. The estimates for this spectral shift function ξ(λ;H,H0) are obtained in terms of the spectral parameter λ > 0 and the integral norms of V . These estimates are in a good agreement with the ones predicted by the classical phase...

متن کامل

AbstractAbstr GRAPH SUBSPACES AND THE SPECTRAL SHIFT FUNCTION

We extend the concept of Lifshits–Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of (admissible) operators that are similar to self-adjoint operators. An operator H is called admissible if: (i) there is a bounded operator V with a bounded inverse such that H = V −1 HV for some self-adjoint operator H; (ii) the operators H and H are resolvent ...

متن کامل

. SP ] 1 6 Ja n 20 09 HIGHER ORDER SPECTRAL SHIFT , II . UNBOUNDED CASE

Abstract. We construct higher order spectral shift functions, which represent the remainders of Taylor-type approximations for the value of a function at a perturbed self-adjoint operator by derivatives of the function at an initial unbounded operator. In the particular cases of the zero and the first order approximations, the corresponding spectral shift functions have been constructed by M. G...

متن کامل

Reference Potential Approach to the Quantum-mechanical Inverse Problem: Ii. Solution of Krein Equation

A reference potential approach to the one-dimensional quantummechanical inverse problem is developed. All spectral characteristics of the system, including its discrete energy spectrum, the full energy dependence of the phase shift, and the Jost function, are expected to be known. The technically most complicated task in ascertaining the potential, solution of a relevant integral equation, has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002